

IKangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016

LIVELLO JUNIOR

Tutte le risposte devono essere giustificate

- J1. (5 punti) La moneta di Kanglandia è il kang. A Kangcity il cambio euro kang funziona così: si ottiene 1 kang pagando 1,20 euro, si ottiene 1 euro pagando 1 kang e proporzionalmente se si cambiano monete di valore inferiore. In entrambe le valute la moneta di valore minimo è quella da un centesimo; si può cambiare qualunque quantità di denaro e il risultato del cambio, se non è esprimibile con un numero intero di centesimi, viene arrotondato al centesimo per eccesso. Sono a Kangcity e ho solo euro. Esiste un modo (lecito) di acquistare un gelato che costa 2 kang spendendo solo 2 euro? In caso affermativo, qual è il minimo numero di cambi che mi consente di farlo?
- **J2**. (7 punti) L'alunno Fox per essere promosso deve sostenere, commettendo al massimo un errore, una prova a risposta chiusa. Può scegliere tra due buste:
 - la busta A che contiene 7 quesiti, ciascuno con 2 risposte,
 - la busta B che contiene 3 quesiti, ciascuno con 6 risposte.

Fox è impreparato e pensa di rispondere a caso ai quesiti. Se vuole essere promosso, gli conviene scegliere la busta A o la B?

- J3. (11 punti) In figura sono schematizzate due monete circolari sul bordo di ciascuna delle quali c'è una tacca; le due monete si toccano in corrispondenza delle tacche. Il diametro della moneta A, la più grande, misura 18 mm. Se la moneta B inizia a ruotare attorno alla moneta A, rimanendole sempre a contatto, deve compiere esattamente due giri attorno alla A perché si ripresenti per la prima volta la situazione in figura (cioè le due monete vengano a toccarsi ancora in corrispondenza delle tacche). Sapendo che anche il diametro della moneta B misura un numero intero di millimetri, che cosa si può dire di tale lunghezza?
- **J4**. (14 punti) Nella strana repubblica di Kang gli anni durano 3000 giorni, numerati da 1 a 3000. I giorni festivi sono quelli il cui numero è divisibile per 6 oppure è un numero primo: gli altri sono giorni lavorativi. Se venisse aggiunto ai giorni festivi anche ogni giorno di "ponte", cioè giorno lavorativo preceduto e seguito da un giorno festivo, quanti giorni festivi in più ci sarebbero in ogni anno?
- **J5**. (18 punti) Rispetto ad un sistema assegnato di assi cartesiani ortogonali nello spazio, le coordinate di tre dei vertici di un cubo sono (4,0,3), (6,4,1) e (2,8,5). Determina, nel modo più veloce in cui riesci a farlo, le coordinate (rispetto allo stesso sistema) di uno dei rimanenti vertici del cubo.
- **J6**. (22 punti) Un parallelogramma è inscritto in un esagono regolare (cioè i suoi vertici sono punti di qualche lato dell'esagono) e i centri (di simmetria) dei due poligoni coincidono. Quanto può valere, al massimo, il rapporto fra l'area del parallelogramma e l'area dell'esagono?

Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016

LIVELLO JUNIOR

J1. (5 punti) La moneta di Kanglandia è il kang. A Kangcity il cambio euro - kang funziona così: si ottiene 1 kang pagando 1,20 euro, si ottiene 1 euro pagando 1 kang e proporzionalmente se si cambiano monete di valore inferiore. In entrambe le valute la moneta di valore minimo è quella da un centesimo; si può cambiare qualunque quantità di denaro e il risultato del cambio, se non è esprimibile con un numero intero di centesimi, viene arrotondato al centesimo per eccesso. Sono a Kangcity e ho solo euro. Esiste un modo (lecito) di acquistare un gelato che costa 2 kang spendendo solo 2 euro? In caso affermativo, qual è il minimo numero di cambi che mi consente di farlo?

Risposta: sì, 40.

Soluzione. Devo riuscire ad ottenere 1 centesimo di *kang* per ogni centesimo di euro. Se cambio 5 centesimi di euro, per via dell'arrotondamento ottengo 5 centesimi di *kang* (si ha 5/1,2 > 4), ma se ne cambio di più ottengo comunque almeno 1 centesimo di *kang* in meno rispetto ai centesimi di euro che ho cambiato.

J2. (7 punti) L'alunno Fox per essere promosso deve sostenere, commettendo al massimo un errore, una prova a risposta chiusa. Può scegliere tra due buste:

- la busta A che contiene 7 quesiti, ciascuno con 2 risposte,
- la busta B che contiene 3 quesiti, ciascuno con 6 risposte.

Fox è impreparato e pensa di rispondere a caso ai quesiti. Se vuole essere promosso, gli conviene scegliere la busta A o la B?

Risposta: la busta B.

Soluzione. Nella prova della busta A le possibili sequenze di risposte sono 2^7 = 128 e, visto che le possibili sequenze di almeno 6 quesiti corretti su 7 sono 8, la probabilità di indovinare le sei risposte richieste è 8/128. Nella prova della busta B le possibili sequenze di risposte sono 6^3 = 216 e, visto che le possibili sequenze di almeno 2 quesiti corretti su 3 sono 16, la probabilità di indovinare le due risposte richieste è 16/216 = 2/27 > 1/16 = 8/128.

J3. (11 punti) In figura sono schematizzate due monete circolari sul bordo di ciascuna delle quali c'è una tacca; le due monete si toccano in corrispondenza delle tacche. Il diametro della moneta A, la più grande, misura 18 mm. Se la moneta B inizia a ruotare attorno alla moneta A, rimanendole sempre a contatto, deve compiere esattamente due giri attorno alla A perché si ripresenti per la prima volta la situazione in figura (cioè le due monete vengano a toccarsi ancora in corrispondenza delle tacche). Sapendo che anche il diametro della moneta B misura un numero intero di millimetri, che cosa si può dire di

Risposta: vale 4 o 12 mm.

tale lunghezza?

Soluzione. Il segmento che rappresenta la circonferenza rettificata della moneta A (lungo 18π) non contiene un multiplo esatto del segmento che rappresenta la circonferenza rettificata della moneta B (lungo $d\pi$, se d è il diametro in mm), ma il suo doppio sì, cioè si ha 36 = kd con k intero, ove per ipotesi d < 18 e d non divide 18 (altrimenti la situazione si ripresenterebbe per la prima volta dopo un giro): le uniche scelte per d sono quindi 4 e 12.

J4. (14 punti) Nella strana repubblica di Kang gli anni durano 3000 giorni, numerati da 1 a 3000. I giorni festivi sono quelli il cui numero è divisibile per 6 oppure è un numero primo: gli altri sono giorni lavorativi. Se venisse aggiunto ai giorni festivi anche ogni giorno di "ponte", cioè giorno lavorativo preceduto e seguito da un giorno festivo, quanti giorni festivi in più ci sarebbero in ogni anno?

Risposta: 2.

Soluzione. Certamente si devono aggiungere come giorno di "ponte" il giorno 1 di ciascun anno (compreso tra 3000 divisibile per 6 e 2 primo) e il giorno 4 compreso tra due primi gemelli. Non ci sono altri giorni da aggiungere perché quelli divisibili per 6 non hanno "a distanza 2" né giorni primi (dovrebbero essere pari e diversi da 2), né giorni multipli di 6; i giorni primi possono avere "a distanza 2" altri primi (primi gemelli), ma escluso il caso di 3 e 5, in tutti gli altri casi il numero tra essi compreso è contemporaneamente pari e divisibile per 3 (dato che non lo è nessuno dei due primi p e p+2) e quindi è già nella lista dei festivi.

J5. (18 punti) Rispetto ad un sistema assegnato di assi cartesiani ortogonali nello spazio, le coordinate di tre dei vertici di un cubo sono (4,0,3), (6,4,1) e (2,8,5). Determina, nel modo più veloce in cui riesci a farlo, le coordinate (rispetto allo stesso sistema) di uno dei rimanenti vertici del cubo.

Risposta: un vertice è (0,4,7).

Soluzione. Le distanze fra due vertici di un cubo, fissata la lunghezza dello spigolo, possono assumere solo tre valori diversi: il minore quando i vertici sono adiacenti, quello intermedio quando sono estremi di una diagonale di una faccia, il maggiore quando sono estremi di una diagonale del cubo. Posto $A \equiv (4,0,3)$, $B \equiv (6,4,1)$ e $C \equiv (2,8,5)$, si riscontra facilmente che con la coppia AB siamo nel primo caso, con la coppia BC nel secondo e con la coppia AC nel terzo. Un quarto vertice D è il simmetrico di B rispetto al punto medio $M \equiv (3,4,4)$ di AC e quindi $D \equiv (6-6)$, 8-4, 8-1). In alternativa si può osservare che la traslazione che porta B in A è la stessa che porta C in D: dunque $D \equiv (2-(6-4), 8-(4-0), 5-(1-3))$.

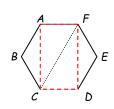
J6. (22 punti) Un parallelogramma è inscritto in un esagono regolare (cioè i suoi vertici sono punti di qualche lato dell'esagono) e i centri (di simmetria) dei due poligoni coincidono. Quanto può valere, al massimo, il rapporto fra l'area del parallelogramma e l'area dell'esagono?

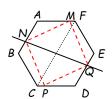
Risposta: 2/3.

Soluzione. Assumiamo che l'area dell'esagono sia 1: ogni rettangolo avente come lati opposti due lati opposti dell'esagono ha allora area 2/3. Mostriamo che nessun parallelogramma inscritto può avere area maggiore.

Versione 1. Siano *ABCD* i vertici, numerati in successione, del parallelogramma; sia quindi X un vertice dell'esagono la cui distanza dal segmento AC sia la massima possibile: chiaramente nessun altro punto dell'esagono ha distanza maggiore dal segmento AC e la distanza del vertice opposto W dell'esagono è la stessa, quindi l'area del parallelogramma AXCW non è inferiore all'area di ABCD (avendo i triangoli AXC e ABC la stessa base AC ed essendo l'altezza del primo non inferiore a quella del secondo). Ripetendo il ragionamento rispetto al parallelogramma AXCW, si individuano altri due vertici opposti Y e Z dell'esagono. Il rettangolo XYWZ ha, come si è osservato, area 2/3.

Versione 2. Siano *ABCDEF* i vertici, numerati in successione, dell'esagono: tutti i parallelogrammi che condividono ad es. con *ACDF* la diagonale *CF* e hanno i due restanti vertici sui lati *AB* e *DE* dell'esagono hanno la stessa area di *ACDF* (in quanto tali lati sono paralleli alla diagonale e quindi hanno da essa la stessa distanza di *A* e *D*), mentre se hanno i due restanti vertici sui lati *BC* e *EF* dell'esagono (estremi della diagonale esclusi) hanno dalla diagonale distanza inferiore e quindi hanno area minore di 2/3.





Per finire, se (come nella seconda figura) nessuna delle due diagonali del parallelogramma coincide con una delle diagonali dell'esagono passanti per il centro, osserviamo che l'area di MNPQ è certamente minore di quella di FNCQ, ove si sono scelti i vertici F e C dell'esagono che hanno dalla diagonale NQ distanza massima (e quindi maggiore di quella di qualunque altro punto dell'esagono, dato che la retta per N e Q contiene il diametro della

circonferenza in cui l'esagono è inscritto) e tale area, come detto sopra, vale 2/3.