IKangourou della Matematica 2011 finale nazionale italiana Mirabilandia. 9 maggio 2011

LIVELLO STUDENT

- **S1**. (5 punti) Un numero intero positivo, scritto in notazione decimale, ha le cifre a due a due diverse fra loro ed è divisibile per ognuna delle sue cifre. Quante cifre può avere al massimo?
- **S2**. (*7 punti*) Ada, Bruna, Carla, Dora ed Enrica saltano ciascuna sul proprio jumper la cui base è praticamente un punto. Ognuna di loro compie salti sempre della stessa lunghezza; le lunghezze sono rispettivamente 70, 80, 85, 90 e 95 cm. Seguono tutte, partendo da uno stesso punto e muovendosi nello stesso verso, uno stesso circuito circolare lungo 400 metri, che è attraversato da un fossato largo 73 cm. Accade che solo una di loro riesce a fare 6 giri completi del circuito senza cadere nel fossato: chi e perché? (Le lunghezze dei salti e la larghezza del fossato si intendono misurate su archi del circuito, non su corde.)
- **S3**. (11 punti) Hai una griglia 7×7 . Vuoi inserire in ogni casella una e una sola delle lettere A, B, C in modo che:
 - in ogni riga il numero delle caselle con la lettera $\mathcal A$ sia non minore del numero delle caselle con la lettera $\mathcal B$ e del numero delle caselle con la lettera $\mathcal C$;
 - in ogni colonna il numero delle caselle con la lettera \mathcal{B} sia non minore del numero delle caselle con la lettera \mathcal{A} e del numero delle caselle con la lettera \mathcal{C} .

Mostra che puoi raggiungere lo scopo in diversi modi, ma che il numero delle caselle con la lettera Cè sempre lo stesso. Qual è? Perché?

- **54**. (14 punti) Vi sono diversi modi di ripartire un quadrato di lato 1 in 4 triangoli ciascuno di area $\frac{1}{4}$ (per "ripartire" si intende scomporre senza sovrapposizioni se non, eventualmente, di lati). Al variare dei modi, può variare la somma dei perimetri dei triangoli. Quanti sono i possibili diversi valori che questa somma può assumere? Giustifica la risposta nel modo più esauriente possibile.
- **S5**. (18 punti) Una formica si trova imprigionata in una scatola il cui pavimento è un quadrato piastrellato con m^2 piastrelle quadrate tutte dello stesso lato e in cui le vie d'uscita sono solo nei quattro vertici. La formica si trova nel vertice in basso a sinistra e si può muovere solo lungo le intercapedini delle piastrelle andando a destra di una e in alto di una, poi a destra di due e in alto di due, poi ancora a destra di tre e in alto di tre e così via. Quando incontra una parete, indipendentemente dal fatto che abbia completato un tratto rettilineo oppure no, si ferma, si gira di 180 gradi verso l'interno della scatola e riprende a muoversi come descritto (cioè muovendosi di una piastrella verso destra, poi di una in alto, poi di due verso destra e così via). Esistono valori di m per i quali la formica riuscirà ad uscire dalla scatola? In caso affermativo, quali sono?
- **56**. (22 punti) Andrea costruisce un insieme S di 24 elementi scelti fra i numeri interi naturali tale che, ogni volta che in S ci sono due numeri n e m, ci siano anche tutti i numeri naturali compresi tra n e m. Nella costruzione di S alcuni numeri possono essere ripetuti. Bruno sceglie un sottoinsieme A di S con la proprietà che, comunque si scelgano due elementi di A, il loro rapporto non superi S. Andrea vuole costruire S in modo da minimizzare il numero di elementi dell'insieme S che Bruno può scegliere. Qual è questo numero? Giustifica adequatamente la risposta.

IKangourou della Matematica 2011 finale nazionale italiana Mirabilandia, 9 maggio 2011

LIVELLO STUDENT

51. (5 punti) Un numero intero positivo, scritto in notazione decimale, ha le cifre a due a due diverse fra loro ed è divisibile per ognuna delle sue cifre. Quante cifre può avere al massimo?

Soluzione: 7.

Cerchiamo un numero che soddisfi la nostre richieste e abbia il maggior numero possibile di cifre. Ovviamente partiamo da numeri che non contengano la cifra 0 e contengano la cifra 1. Dobbiamo sacrificare la cifra 5: per essere divisibili per 5, dovrebbero terminare per 5, il che pregiudicherebbe la divisibilità per ogni numero pari. La somma delle rimanenti otto cifre, 40, non è divisibile per 3: sacrificando anche la cifra 4, se il numero è pari si assicura la divisibilità per 3, per 6 e per 9. Ad esempio, 8973216 è divisibile anche per 8 e per 7.

52. (*T punti*) Ada, Bruna, Carla, Dora ed Enrica saltano ciascuna sul proprio jumper la cui base è praticamente un punto. Ognuna di loro compie salti sempre della stessa lunghezza; le lunghezze sono rispettivamente 70, 80, 85, 90 e 95 cm. Seguono tutte, partendo da uno stesso punto e muovendosi nello stesso verso, uno stesso circuito circolare lungo 400 metri, che è attraversato da un fossato largo 73 cm. Accade che solo una di loro riesce a fare 6 giri completi del circuito senza cadere nel fossato: chi e perché? (Le lunghezze dei salti e la larghezza del fossato si intendono misurate su archi del circuito, non su corde.)

Soluzione: Bruna.

Il salto di Ada è più corto della larghezza del fossato, quindi non potrà mai saltarlo. Carla, Dora ed Enrica dopo 470, 444 e 421 salti rispettivamente sono, nell'ordine, a 50 cm, a 40 cm ed a 5 cm dalla conclusione del primo giro. Di conseguenza Carla nel secondo giro ad ogni salto atterra 50 cm prima di dove è atterrata nel primo giro; se nel primo giro riesce a superare il fossato, dopo il salto atterra a non più di 12 cm dal bordo: al secondo giro il punto in cui atterra è arretrato di 50 cm, quindi certamente dentro il fossato.

Analogamente: Dora, se nel primo giro riesce a superare il fossato, dopo il salto atterra a non più di 17 cm dal bordo e poiché al secondo giro atterra 40 cm prima vi cade dentro ed Enrica, se nel primo giro riesce a superare il fossato, atterra a non più di 22 cm dal bordo, e atterrando 5 cm prima ad ogni giro successivo, cade nel fossato al più tardi al sesto giro.

Bruna invece, poiché 40000 è un multiplo intero di 80, dopo 500 salti tornerà al punto di partenza e nei giri successivi atterrerà esattamente negli stessi punti in cui è atterrata durante il primo giro: o cade nel fossato al primo giro o non vi cade più.

- **53**. (11 punti) Hai una griglia 7×7 . Vuoi inserire in ogni casella una e una sola delle lettere A, B, C in modo che:
 - in ogni riga il numero delle caselle con la lettera A sia non minore del numero delle caselle con la lettera B e del numero delle caselle con la lettera C;
 - in ogni colonna il numero delle caselle con la lettera \mathcal{B} sia non minore del numero delle caselle con la lettera \mathcal{A} e del numero delle caselle con la lettera \mathcal{C} .

Mostra che puoi raggiungere lo scopo in diversi modi, ma che il numero delle caselle con la lettera Cè sempre lo stesso. Qual è? Perché?

Soluzione: 7.

Una possibile soluzione è quella a fianco.

Ogni permutazione delle righe e/o delle colonne fornisce una soluzione. È ovvio che in ogni riga devono esserci almeno 3 A: infatti con un numero inferiore di A dovrebbero esserci almeno 3 B o 3 C. Per lo stesso motivo in ogni colonna devono esserci almeno 3 B. Allora complessivamente devono esserci al più 49 - $2\times21=7$ C. Se le C fossero in numero inferiore a 7, almeno uno dei due insiemi di lettere, quello delle A o quello delle B, dovrebbe avere almeno 22 elementi:

С	Α	Α	Α	В	В	В
Α	С	Α	Α	В	В	В
Α	Α	С	Α	В	В	В
В	В	В	С	Α	Α	Α
Α	В	В	В	С	Α	Α
В	В	Α	В	Α	С	Α
В	Α	В	В	Α	Α	С

supponiamo sia quello delle A. Allora in almeno una delle 7 colonne dovrebbero essere presenti almeno 4 lettere A, quindi in almeno una colonna le A sarebbero più delle B: impossibile. Ragionando simmetricamente sull'insieme delle B e sulle 7 righe si vede che non possono esistere più di 21 lettere B e quindi che le C sono sempre in numero di 7.

54. (14 punti) Vi sono diversi modi di ripartire un quadrato di lato 1 in 4 triangoli ciascuno di area $\frac{1}{4}$ (per "ripartire" si intende scomporre senza sovrapposizioni se non, eventualmente, di lati). Al variare dei modi, può variare la somma dei perimetri dei triangoli. Quanti sono i possibili diversi valori che questa somma può assumere? Giustifica la risposta nel modo più esauriente possibile.

Soluzione: 5.

 \dot{E} ovvio che qualcuno dei 4 triangoli deve avere almeno un lato "base" b contenuto in un lato del quadrato. La base b può solo

- coincidere con il lato del quadrato (in tal caso il triangolo di base b ha altezza $\frac{1}{2}$);
- essere lunga $\frac{1}{2}$ e avere un vertice coincidente con un vertice del quadrato (in tal caso il triangolo di base *b* ha altezza 1).

Infatti se la misura di b fosse minore di $\frac{1}{2}$, l'area del triangolo (che può avere altezza al più 1) sarebbe minore di $\frac{1}{4}$; se fosse strettamente compresa tra $\frac{1}{2}$ e 1 o se fosse uguale a $\frac{1}{2}$, ma nessun estremo di b coincidesse con un vertice del quadrato, sul lato del quadrato su cui giace b resterebbero segmenti di lunghezza $<\frac{1}{2}$ cui non potrebbero corrispondere triangoli di area $\frac{1}{4}$.

È poi chiaro che non ci possono essere più di due lati del quadrato che contengano "basi" di lunghezza $\frac{1}{2}$ (darebbero luogo a più di 4 triangoli di area $\frac{1}{4}$); quindi, a meno di rotazioni e di simmetrie assiali, si possono presentare solo le seguenti configurazioni.

a) Il punto medio di nessun lato del quadrato è vertice di un triangolo di area $\frac{1}{4}$.

Somma dei perimetri $4 + 4\sqrt{2}$.

b) Il punto medio di un solo lato del quadrato è vertice di un triangolo di area $\frac{1}{4}$.

Somma dei perimetri: nel primo caso $4+3\sqrt{2}+\sqrt{5}$, nel secondo $4+2\sqrt{5}+\frac{\sqrt{13}}{2}$. Infatti P deve essere il punto medio di AQ, per cui i triangoli APB e QBP (di area $\frac{1}{4}$) hanno altezza comune HB lunga $2 \cdot \frac{1}{4} : \frac{\sqrt{5}}{4} = \frac{2}{\sqrt{5}}$. Facili conti (teorema di Pitagora) forniscono che BP è lungo $\frac{\sqrt{13}}{4}$.

c) I punti medi di due lati opposti del quadrato sono vertici di triangoli di area $\frac{1}{4}$.

Somma dei perimetri: nei primi due casi $6+2\sqrt{5}$, nel terzo $4+2\sqrt{2}+2\sqrt{5}$.

d) I punti medi di due lati consecutivi del quadrato sono vertici di triangoli di area $\frac{1}{4}$.

Somma dei perimetri: $4+2\sqrt{2}+2\sqrt{5}$, come nell'ultimo caso precedente.

S5. (18 punti) Una formica si trova imprigionata in una scatola il cui pavimento è un quadrato piastrellato con m^2 piastrelle quadrate tutte dello stesso lato e in cui le vie d'uscita sono solo nei quattro vertici. La formica si trova nel vertice in basso a sinistra e si può muovere solo lungo le intercapedini delle piastrelle andando a destra di una e in alto di una, poi a destra di due e in alto di due, poi ancora a destra di tre e in alto di tre e così via. Quando incontra una parete, indipendentemente dal fatto che abbia completato un tratto rettilineo oppure no, si ferma, si gira di 180 gradi verso l'interno della scatola e riprende a muoversi come descritto (cioè muovendosi di una piastrella verso destra, poi di una in alto, poi di due verso destra e così via).

Esistono valori di *m* per i quali la formica riuscirà ad uscire dalla scatola? In caso affermativo, quali sono?

Soluzione: sì, sono tutti e soli i numeri del tipo 1 + k(k+1)/2 con k intero positivo, cioè i numeri che, per qualche intero positivo k, sono la somma dei primi k interi positivi aumentata di 1.

Per semplicità di notazioni supponiamo che le piastrelle siano di lato 1 e denotiamo con S_k la somma dei primi k interi positivi ($S_k = k(k+1)/2$). Poiché la partenza avviene in orizzontale, la prima parete che la formica incontra è la parete verticale destra e la incontra in un punto che è più in basso del vertice superiore destro del pavimento. Quando è arrivata in quel punto, ha compiuto in verticale un percorso lungo S_k per qualche valore intero di k.

Se al vertice superiore destro del pavimento manca una piastrella, cioè se $m = S_k + 1$, riesce ad uscire.

Se invece mancano più piastrelle (un numero compreso fra 2 e S_{k+1}), è chiaro che la seconda parete ad essere incontrata è la parete orizzontale superiore, in un punto distante più di 1 dal vertice superiore sinistro. È quindi la volta della parete verticale sinistra, in un punto sempre distante più di 1 dal vertice di partenza. È chiaro che nessuna parete può più essere incontrata in un punto distante 1 dal vertice verso il quale la formica si deve dirigere.

56. (22 punti) Andrea costruisce un insieme S di 24 elementi scelti fra i numeri interi naturali tale che, ogni volta che in S ci sono due numeri n e m, ci siano anche tutti i numeri naturali compresi tra n e m. Nella costruzione di S alcuni numeri possono essere ripetuti. Bruno sceglie un sottoinsieme S di S con la proprietà che, comunque si scelgano due elementi di S, il loro rapporto non superi S. Andrea vuole costruire S in modo da minimizzare il numero di elementi dell'insieme S che Bruno può scegliere. Qual è questo numero? Giustifica adequatamente la risposta.

Soluzione: 8.

Posto

$$S = \{1, 1, 1, ..., (7 \text{ volte}), 2, 3, 3, ..., (5 \text{ volte}), 4, 5, 6, ..., 14\},$$

Bruno può selezionare un sottoinsieme ammissibile A di 8 elementi, ma in ogni sottoinsieme di 9 elementi ne esistono almeno due con rapporto maggiore di 2.

Supponiamo d'altra parte che Andrea possa scegliere 5 in modo che in ogni suo sottoinsieme di 8 elementi ne esistano almeno due con rapporto maggiore di 2. Allora:

- (i) ciascuno degli insiemi $\{1,2\}$ $\{3,...,6\}$ $\{7,...,14\}$ non può fornire più di 7 elementi a S, il che implica che in S ci deve essere qualche elemento (almeno 3) maggiore di 14.
- (ii) il numero 7 deve stare in S. Infatti se tutti gli elementi di S fossero maggiori di T, detto p il più piccolo elemento di S, si avrebbe che S deve contenere almeno p elementi compresi fra p e 2p: impossibile se p > T.

Le condizioni (i) e (ii), unite alla proprietà che caratterizza S, implicano che stiano in S tutti gli 8 numeri tra 7 e 14 (estremi inclusi), che consentirebbero a Bruno di selezionare un sottoinsieme ammissibile A di 8 elementi. Assurdo.