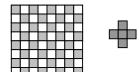


IKangourou della Matematica 2004 fiinale nazionale italiana Mirabilandia, 5 maggio 2004

LIVELLO STUDENT

- **S1.** (5 punti) Per quali coppie (x, y) di numeri interi relativi è vero che $|x^2 3y^2| + 2xy| = 1$?
- **S2.** (7 punti) Sono date nel piano una circonferenza β il cui raggio misura $\sqrt{2}$ centimetri ed una circonferenza γ il cui raggio misura 2 centimetri e il cui centro C appartiene a β . Calcolare l'area della regione interna a β ed esterna a γ .
- **S3.** (11 punti) Sistemiamo in una scacchiera quadrata 8×8 delle tessere a forma di croce simmetrica come quella in figura, formate dall'accostamento di 5 quadrati di dimensione identica alle celle della scacchiera, in modo che:



- ciascuna di esse vada a coprire esattamente (sovrapponendovisi)
 5 delle 64 caselle della scacchiera;
- le tessere non si sovrappongano, ma possano toccarsi e toccare il bordo della scacchiera.

Quante tessere può ospitare al massimo la scacchiera?

- **S4.** (14 punti) Un calcolatore esegue le seguenti istruzioni: (1) inizializza X a 3 e S a 0, (2) aumenta il valore di X di 2, (3) aumenta il valore di S del valore di X, (4) se S ha almeno 5 cifre vai all'istruzione (5) altrimenti vai all'istruzione (2) e ricomincia a partire da quella posizione, (5) stampa il valore di X e finisci. Quale sarà il valore di X che verrà stampato al passo (5)?
- **S5.** (18 punti) Supponi di sapere che (per n = 1,2,...) a_n è il quadrato di un intero non nullo e la differenza $a_{n+1} a_n$ è un numero primo (positivo) oppure il quadrato di un numero primo. Dimostra che tutte le possibili sequenze $\{a_n\}$ che soddisfano questi requisiti sono finite e determina la più lunga.
- **S6.** (22 punti) Considera un punto P interno ad un tetraedro regolare di lato 1. Mostra che la somma delle distanze di P dai sei spigoli del tetraedro non è inferiore a $\frac{3\sqrt{2}}{2}$ e individua gli eventuali punti P in corrispondenza ai quali tale somma vale esattamente $\frac{3\sqrt{2}}{2}$.

IKangourou della Matematica 2004 fiinale nazionale italiana Mirabilandia, 5 maggio 2004

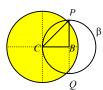
LIVELLO STUDENT

S1. (5 punti) Per quali coppie (x, y) di numeri interi relativi è vero che $|x^2 - 3y^2| + 2xy| = 1$?

Soluzione. Si ha $x^2 - 3y^2 + 2xy = (x + y)^2 - 4y^2 = (x - y)(x + 3y)$. Nel nostro caso questi due fattori possono assumere solo valori interi, dunque, per noi, 1 o - 1. I due casi in cui sono di segno discorde con facili calcoli forniscono $|x| = |y| = \frac{1}{2}$, dunque non sono accettabili. Sempre con facili calcoli, ponendoli entrambi uguali a 1, otteniamo la coppia (1,0); ponendoli entrambi uguali a - 1, otteniamo la coppia (-1,0).

S2. (7 punti) Sono date nel piano una circonferenza β il cui raggio misura $\sqrt{2}$ cm ed una circonferenza γ il cui raggio misura 2 cm e il cui centro C appartiene a β . Calcolare l'area della regione interna a β ed esterna a γ .

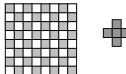
Soluzione.



Siano $P \in Q$ i due punti di intersezione fra $\beta \in \gamma$. Osserviamo che la corda PQ contiene il centro B di β (e quindi ne è un diametro): infatti, i triangoli isosceli PBC e QBC sono rettangoli in B in quanto |PC| = |CQ| = 2 e $|BC| = |BP| = |BQ| = \sqrt{2}$. Dunque la regione di cui si cerca l'area si ottiene togliendo dal semicerchio delimitato da β ed esterno a γ il minore dei 2 segmenti circolari di γ aventi corda PQ. Quest'ultimo è la differenza tra il settore circolare PCQ e il triangolo PCQ, rettangolo in C. Allora l'area cercata vale, in centimetri quadrati,

$$(1/2)\pi \cdot (\sqrt{2})^2 - [(1/4)\cdot \pi \cdot 2^2 - 2^2/2] = 2.$$

S3. (11 punti) Sistemiamo in una scacchiera quadrata 8×8 delle tessere a forma di croce simmetrica come quella in figura, formate dall'accostamento di 5 quadrati di dimensione identica alle celle della scacchiera, in modo che:



- ciascuna di esse vada a coprire esattamente (sovrapponendovisi) 5 delle 64 caselle della scacchiera;
- le tessere non si sovrappongano, ma possano toccarsi e toccare il bordo della scacchiera.

Quante tessere può ospitare al massimo la scacchiera?

Soluzione. È ovvio che, per ogni lato della scacchiera, sono al massimo due le caselle adiacenti quel lato che possono venire coperte da qualche tessera. Quindi non più di $2\cdot 4 + 6\cdot 6 = 44$ caselle della scacchiera possono essere coperte, il che (coprendo ogni tessera 5 caselle e non potendo le tessere sovrapporsi) significa che la scacchiera non può ospitare più di 8 (=quoziente di 44:5) tessere. In effetti 8 tessere possono essere collocate, come mostra la figura.

S4. (14 punti) Un calcolatore esegue le seguenti istruzioni: (1) inizializza X a 3 e S a 0, (2) aumenta il valore di X di 2, (3) aumenta il valore di S del valore di X, (4) se S ha almeno 5 cifre vai all'istruzione (5) altrimenti vai all'istruzione (2) e ricomincia a partire da quella posizione, (5) stampa il valore di X e finisci. Quale sarà il valore di X che verrà stampato al passo (5)?

Soluzione. Le istruzioni si traducono così: X_0 =3, S_0 =0, X_{n+1} = X_n +2, S_{n+1} = S_n + X_{n+1} . Quindi X_{n+1} =3+2n e S_{n+1} = X_1 +...+ X_{n+1} =3(n+1)+2(1+...+n)=3(n+1)+n(n+1)=(3+n)(n+1) \geq 10000 se $n\geq$ 99 (infatti (98+1)(98+3)=9999) e quindi X=10200.

S5. (18 punti) Supponi di sapere che (per n = 1,2,...) a_n è il quadrato di un intero non nullo e la differenza $a_{n+1} - a_n$ è un numero primo (positivo) oppure il quadrato di un numero primo. Dimostra che tutte le possibili sequenze $\{a_n\}$ che soddisfano questi requisiti sono finite e determina la più lunga.

Soluzione. Scriviamo $a_n = b_n^2$ con b_n intero positivo. La differenza $a_{n+1} - a_n = (b_{n+1} - b_n)(b_{n+1} + b_n)$

deve essere un primo o il quadrato di un primo: essendo i due fattori a secondo membro diversi, deve essere $b_{n+1} - b_n = 1$. Allora, per ogni n per cui è definito a_n , deve aversi $b_{n+1} = b_1 + n$ e quindi

- $a_{n+1} = (b_1 + n)^2$
- $a_{n+1}-a_n=2b_1+2n-1$.

Ne segue che $\{a_{n+1} - a_n\}$ è una sequenza di interi dispari consecutivi il cui primo termine è ≥ 3 . La sequenza 3, 5, 7, 9, 11, 13, ottenuta per b_1 =1, è fatta da numeri che o sono primi o sono quadrato di un primo: dunque è accettabile per $\{a_{n+1} - a_n\}$ e fornisce per $\{a_n\}$ la sequenza 1, 4, 9, 16, 25, 36, 49 di lunghezza 7. D'altra parte, a partire da 15, un intero dispari ogni 3 è multiplo proprio di 3 e non ne è il quadrato: non può dunque essere primo né il quadrato di alcun numero primo: quindi la sequenza trovata non è prolungabile e non se ne può trovare una più lunga.

S6. (22 punti) Considera un punto P interno ad un tetraedro regolare di lato 1. Mostra che la somma delle distanze di P dai sei spigoli del tetraedro non è inferiore a $\frac{3\sqrt{2}}{2}$ e individua gli eventuali punti P in corrispondenza ai quali tale somma vale esattamente $\frac{3\sqrt{2}}{2}$.

Soluzione. I quattro vertici del tetraedro regolare stanno nei vertici "alterni" di un cubo di lato $(\sqrt{2})/2$. La distanza di P da ciascuno degli spigoli l non è inferiore alla distanza di P dalla faccia del cubo che contiene l: la somma delle distanze di P da due facce opposte è $(\sqrt{2})/2$ e quindi rifacendo lo stesso ragionamento per ciascuna delle tre coppie di spigoli del tetraedro giacenti su facce opposte si ha che la somma delle distanze di P dai sei spigoli del tetraedro non è inferiore a $(3\sqrt{2})/2$. Il baricentro B del tetraedro è uno dei punti in corrispondenza ai quali tale somma vale esattamente $(3\sqrt{2})/2$: infatti, avendo uguale distanza dai vertici, deve coincidere con il baricentro del cubo, la cui distanza da ciascuno spigolo del tetraedro è esattamente $(\sqrt{2})/2$ (poiché la normale da B alle facce del cubo cade esattamente sulle loro diagonali, tra le quali ci sono gli spigoli del tetraedro). Questa è l'unica posizione in cui si realizza l'uguaglianza. Infatti, consideriamo il generico spigolo l del tetraedro: affinché valga l'uguaglianza, occorre che la distanza di P da l sia uguale alla sua distanza dalla faccia P del cubo che ospita l, per cui P deve appartenere al piano ortogonale a P passante per l. Al variare di l, l'intersezione dei piani così individuati si riduce al solo baricentro.